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SUMMARY

High order approximation methods based on radial basis functions are applied to the extension of
semi-Lagrangian shallow water models to staggered Cartesian meshes with cut boundary cells. The
accuracy and e�ciency of the resulting semi-Lagrangian method is demonstrated by test cases simulating
open channel �ow. The derivative reconstruction provided by radial basis function interpolators is also
employed successfully in the discretization of sediment transport models for mobile bed river �ow.
Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A novel approach for modelling mobile-bed hydrodynamics is presented, obtained applying
high order interpolation methods, using radial basis functions (RBF), to semi-implicit, semi-
Lagrangian algorithms on staggered Cartesian meshes with cut boundary cells. A discretiza-
tion with C-type staggering of the discrete variables is considered, as commonly employed
in MAC-type discretizations [1] of two-dimensional �uid �ow. It is assumed that the domain
boundaries are described by segments of straight lines and that each boundary cell is inter-
sected by at most a single straight line (Figure 1(a)). The choice of the cut cell approach
is motivated by the fact that, with respect to standard rectangular cells, it allows to achieve
an improved description of the boundaries while retaining the accuracy, e�ciency and sim-
plicity of the standard discretizations on Cartesian grid in absence of boundaries. It will
be shown that accurate and e�cient semi-Lagrangian methods are achieved, which allow to

∗Correspondence to: Giorgio Rosatti, Dipartimento di Ingegneria Civile ed Ambientale, Mesiano di Povo 77,
I-38050 (TN), Italy.

†E-mail: giorgio.rosatti@ing.unitn.it

Received 27 April 2004
Revised 5 October 2004

Copyright ? 2005 John Wiley & Sons, Ltd. Accepted 5 October 2004



1270 G. ROSATTI, R. CHEMOTTI AND L. BONAVENTURA

(a) (b)

Figure 1. (a) Cut cells produced by piecewise linear approximation of the domain boundary;
and (b) de�nition of the cut cell side fractions.

perform river �ow simulations at high Courant numbers, thus allowing to reduce greatly the
computational cost. This is very advantageous when performing long term simulations of
mobile-bed hydrodynamics in rivers, estuaries and lagoons at low Froude numbers. Moreover,
the high non-linearities that characterize sediment transport and morphological bed evolution
require robust and accurate interpolation techniques along with an accurate description of the
boundaries.

2. THE MODEL EQUATIONS AND THEIR CUT CELL DISCRETIZATION

The 2D hydrodynamical model consists of the depth-averaged water continuity and momentum
equations
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where g is the gravitational acceleration, U;V are the vertically averaged velocities in the x; y
directions, respectively, � is the free surface elevation with respect to a reference horizontal
plane, H = �− z is the total �uid depth and z is the bottom surface elevation. �bx , �

b
y represent
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the bed shear stresses and can be expressed as
�bx
�
= �bU;

�by
�
= �bV (2)

where � is the �uid density, �b = g
√
U 2 + V 2=�2 and � is the Ch�ezy coe�cient for hydraulic

roughness.
The mobile-bed model can be obtained adding the following sediment continuity equation

to system (1):
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in which qsx, qsy are the sediment transport rates per unit width in x and y directions,
respectively. In the present model we assume uniform grain-size distribution and immediate
adaptation of the sediment rate to the local depth-averaged �ow parameters. The relation we
used is the one proposed by van Rijn [2]

qs√
g�d

=0:053
[
�− �cr
�cr

]2:1
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where qb is the module of the sediment transport rate per unit width, �= (�s − �)=� is the
relative density of the bed material respect water, d is the diameter of the sediment particles,
�= |�|=(��d) is the Shields parameter, �cr is the critical value of the Shields parameter and
D∗=d(g�=�2)1=3 is the characteristic adimensional sediment diameter. In subcritical �ows,
the sediment transport vector is not aligned with the depth-averaged velocity vector (for a
detailed description of the problem see e.g. References [3, 4]): secondary �ows in bends and
gravity e�ects on sediment grains on a sloping bed generate a deviation of the direction of the
sediment �ow with respect to the depth-averaged water �ow. In order to express these terms,
an orthogonal, curvilinear co-ordinate system (s; n) is considered, where the s-axis is along
the depth-averaged streamline, positive in the streamwise direction, and n is the principal unit
normal vector. Secondary �ow generates a bottom stress in n direction that can be expressed
(see e.g. Reference [5]) as

�n=��|U|2 H
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where � has a value in the range between 0.02 and 0.06, |U| is the depth-averaged velocity
module, H is the water depth and R is the streamline curvature radius. The value of |�|,
to be used in (4), is given by |�|=√

�2s + �2n, where �s is obtained from the solution of the
hydrodynamical model. Gravity rotates the sediment transport rate vector qb in such a way that
the component of the vector along the s and n directions, following Reference [6], becomes
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where r is a parameter whose value is in the range between 0.3 and 0.6 and @z=@n is the
slope of the bottom in the normal direction. The value of qsx, qsy, to be used in (3), can be
easily obtained projecting qs and qn along the x- and y-axis.
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Table I. Accuracy of RBF interpolators (MQ=multiquad., TPS= thin plate spl.) for the x component
of the velocity on a Cartesian grid with cut cells.

l∞ error l2 error Conv. rate in l∞ Conv. rate in l2

	�x MQ TPS MQ TPS MQ TPS MQ TPS

1=6 3:8× 10−2 5:7× 10−2 2:2× 10−6 2:3× 10−5 — — — —
1=12 1:1× 10−2 1:5× 10−2 3:1× 10−6 4:5× 10−6 1.8 1.9 2.8 2.4
1=24 2:8× 10−3 5:3× 10−3 2:9× 10−7 9:1× 10−7 1.9 1.5 3.4 2.3
1=48 1:0× 10−3 2:0× 10−3 3:6× 10−8 2:0× 10−7 1.5 1.4 3.0 2.1

We consider now the introduction of an improved description of the boundaries in the
context of a Cartesian grid approach. We assume that the domain boundaries are described by
segments of straight lines and that each boundary cell is intersected by at most a single straight
line (see Figure 1(a)). As stated above, even if this is a priori limitation, it allows to rule out
the too complicated subgrid behaviour of the boundaries. Anyhow it is su�ciently general to
allow for appropriate boundary description in most environmental �ows. Let 
i+1=2; j ; 
i; j+1=2
denote the lengths of the cut cell sides fractions that are within the computational domain in
the x; y directions, respectively (see Figure 1(b)). Denote the area of the cut cell (i; j) by Ai; j
and let �i; j=Ai; j=(�x�y).
The �nite di�erence, semi-implicit discretization of the shallow water equations intro-

duced in Reference [7] and used successfully in a number of practical applications (see e.g.
Reference [8]) is extended by introducing the quantities 
i+1=2; j ; 
i; j+1=2 and �i; j in the com-
putation of the mass and sediment �uxes. Furthermore, velocity component locations along
the cut cell edges are moved to the midpoint of the part of the edge that belongs to the
computational domain.
In the semi-Lagrangian method and in the computation of the sediment �uxes, radial basis

function (RBF) interpolations are used to obtain the values of the velocity components in
points of the grids where they are not de�ned (e.g. the V component in position i+1 2; j) as
well as derivatives of the variables that are necessary to compute (4). RBF are an interpolation
technique for scattered multivariate data that has been studied in depth over the last two
decades (see e.g. the review in Reference [9]). When appropriate radial basis functions are
chosen, spectral convergence rates can be achieved (see e.g. References [10, 11]). It can
also be shown that the derivatives of the interpolated function can be approximated just as
accurately by the derivative of the RBF interpolator. To the best of our knowledge, RBF
interpolators have been used in high order �nite volume methods, but not in conjunction with
cut cell approaches. The e�ective accuracy and robustness for the reconstruction of scalar and
vector �elds on Cartesian grids with cut cells will now be demonstrated by a simple example.
In this test, a stencil of N =10 points was used and the RBF interpolator was constrained to
�t linear polynomials in x; y exactly (see e.g. Reference [9]). The basis functions used were
the multiquadric (MQ) and the thin plate spline (TPS) �(x)= (	x)2 log 	x. Results obtained
with other basis functions such as the Gaussian �(x)= e−(	x)

2
or the Inverse-Multiquadric

�(x)=1=
√
1 + (x	)2 were entirely analogous to those obtained with MQ. The function to be

interpolated was taken to be the U component of an analytic velocity �eld representing 2D
potential �ow around an in�nite cylinder with far �eld velocity U0 aligned with the x-axis.
The error behaviour is shown in Table I.
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3. NUMERICAL TESTS

Numerical tests of the previously described approach were performed �rst with a
two-dimensional model of shallow water �ow over a �xed bed. As a �rst test, uniform
�ow in a straight open channel with rectangular section was considered, for which an analytic
solution is available. In order to check the accuracy of the proposed cut cell approach, the
channel was oriented at �=22:8◦ with respect to a rectangular Cartesian mesh. Simulations
were performed using Courant numbers with respect to the velocity equal to 3.23 and 1.28
in x and y directions, respectively. The resulting relative errors of the velocity components
and of the water depth with respect to the analytical solution were of the order 10−4 and
10−8 in the l∞ and l2 norm, respectively. Similar values can be obtained with a standard
discretization on a Cartesian grid if a channel aligned with the grid is considered.
Another test was run with analogous boundary conditions in the case of a curved

channel. The channel had rectangular section 2:5m wide, slope ib = 0:35× 10−3 and the Ch�ezy
coe�cient was taken to be equal to 83:4 m1=2=s. Two orthogonal straight reaches were
connected with a curved one, bounded by two quarters of circle with radii 12.5 and 15 m,
respectively. A rectangular Cartesian mesh with �x=�y equal to 0:1 m was used. Simula-
tions were performed using a timestep equal to 0:9 s and therefore the Courant number (with
respect to the velocity) was approximately equal to 4.8. The computed value for the deviation
of the free surface from the horizontal along the cross section at 45◦ of the curved part of
the channel is 0:0052m, which agrees very well with analytical estimates of 5:2062× 10−3 m
(see e.g. Reference [12]).
In order to test the model in a case with sediment transport and mobile bed, the same

setup was considered as in the curved channel �xed bed case. At the upstream bound-
ary, the water discharge was the same as in the previous test while the sediment discharge
was qs=1:58× 10−7 m3=s. Results of the bottom con�guration after 130 h of simulations are
compared with a laboratory experiment, from Reference [13], similar to the numerical one,
see Figure 2. The lack of description of boundary conditions for the experimental test did not
allow to reproduce exactly that test, so the comparison is only qualitative.
It is possible to notice that all the main features of the bottom topography are well captured

by the numerical model. At the entrance of the curve, deposition is at the outer side of the

Scour

DepositionDeposition

Flow
direction

Figure 2. Comparison between asymptotic bottom elevations obtained, on the left, with laboratory data
(from Reference [13]), and on the right, with the present numerical model.
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Figure 3. Cross sections of the bottom con�gurations obtained with the numerical model after 130 h of
simulations: (a) at the entrance of the curve; and (b) at a radial section at 45◦.

channel and scour is near the inner side. Downstream, the situation is the opposite and a
point bar is obtained at the inner side of the curve while the scour is located at the outer
side. In the curved reach, maximum scour and deposition are obtained in a section at 45◦,
while another maximum/minimum is localized at the end of the curve.
A more quantitative estimate of the quality of the numerical results can be obtained

comparing the slope of the bottom in the section at 45◦ obtained with the numerical model
with the semi-empirical expression proposed in Reference [3]: Sn=Cd=r where Sn is the bot-
tom slope in the normal direction C � 7 tan(�=6), H is the local water depth and r is the
mean curvature radius of the channel. The numerical model gives a value of the bottom slope
equal to 5:35× 10−2 while the semi-empirical estimate, evaluated with average values of
water depth and curvature radius, respectively, H =0:11 m and r=13:75 m, gives a value
equal to 3:31× 10−2. This result is signi�cant because the semi-empirical relation is a rather
crude estimate and only gives the correct order of magnitude for the slope. Finally, it can be
noticed that the bottom pro�le is smooth also near the boundaries, see Figure 3. Since small
perturbations are strongly ampli�ed by the high non-linearity of the sediment transport rela-
tions, they can generate relevant bottom variations; the lack of these features in the numerical
results is an indirect con�rmation of the lack of spurious e�ects at the boundaries.
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